In vivo residue-specific histone methylation dynamics.

Publication Year
2010

Type

Journal Article
Abstract
Methylation of specific histone residues is capable of both gene activation and silencing. Despite vast work on the function of methylation, most studies either present a static snapshot of methylation or fail to assign kinetic information to specific residues. Using liquid chromatography-tandem mass spectrometry on a high-resolution mass spectrometer and heavy methyl-SILAC labeling, we studied site-specific histone lysine and arginine methylation dynamics. The detection of labeled intermediates within a methylation state revealed that mono-, di-, and trimethylated residues generally have progressively slower rates of formation. Furthermore, methylations associated with active genes have faster rates than methylations associated with silent genes. Finally, the presence of both an active and silencing mark on the same peptide results in a slower rate of methylation than the presence of either mark alone. Here we show that quantitative proteomic approaches such as this can determine the dynamics of multiple methylated residues, an understudied portion of histone biology.
Journal
J Biol Chem
Volume
285
Issue
5
Pages
3341-50
Date Published
01/2010
ISSN Number
1083-351X
Alternate Journal
J. Biol. Chem.
PMID
19940157