Regulated somatic hypermutation enhances antibody affinity maturation.
Type
Germinal centres are specialized microenvironments where B cells undergo affinity maturation. B cells expressing antibodies whose affinity is improved by somatic hypermutation are selected for expansion by limiting numbers of T follicular helper cells. Cell division is accompanied by mutation of the immunoglobulin genes, at what is believed to be a fixed rate of around 1 × 10 per base pair per cell division. As mutagenesis is random, the probability of acquiring deleterious mutations outweighs the probability of acquiring affinity-enhancing mutations. This effect might be heightened, and even become counterproductive, in B cells that express high-affinity antibodies and undergo the greatest number of cell divisions. Here we experimentally examine a theoretical model that explains how affinity maturation could be optimized by varying the rate of somatic hypermutation such that cells that express higher-affinity antibodies divide more but mutate less per division. Data obtained from mice immunized with SARS-CoV-2 vaccines or a model antigen align with the theoretical model and show that cells producing high-affinity antibodies shorten the G0/G1 phases of the cell cycle and reduce their mutation rates. We propose that these mechanisms safeguard high-affinity B cell lineages and enhance the outcomes of antibody affinity maturation.