@article{90316, keywords = {Kinetics, Models, Biological, Biopolymers, Microtubules}, author = {Douglas Swanson and Ned Wingreen}, title = {Active biopolymers confer fast reorganization kinetics.}, abstract = { Many cytoskeletal biopolymers are "active," consuming energy in large quantities. In this Letter, we identify a fundamental difference between active polymers and passive, equilibrium polymers: for equal mean lengths, active polymers can reorganize faster than equilibrium polymers. We show that equilibrium polymers are intrinsically limited to linear scaling between mean lifetime (or mean first-passage time, or MFPT) and mean length, MFPT\~{}, by analogy to 1D Potts models. By contrast, we present a simple active-polymer model that improves upon this scaling, such that MFPT\~{}(1/2). Since, to be biologically useful, structural biopolymers must typically be many monomers long yet respond dynamically to the needs of the cell, the difference in reorganization kinetics may help to justify the active polymers{\textquoteright} greater energy cost. }, year = {2011}, journal = {Phys Rev Lett}, volume = {107}, pages = {218103}, month = {11/2011}, issn = {1079-7114}, doi = {10.1103/PhysRevLett.107.218103}, language = {eng}, }